
A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

460

International Journal of Technology and Engineering System (IJTES)
 Vol 7. No.5 2015 Pp. 460-469
©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345
--

A Speculative Performance Appraisal of Comparative Keyword
Search Scheme

Vijaya. A1, Madhangopi. A, M.E.,(Ph.D)2
1ME(CSE) Student, 2Assistant Professor/CSE

1,2Sri Muthukumaran Institute of Technology, Chennai.
1vijayakas28@ymail.com, 2madhangopi@gmail.com

ABSTRACT

The keyword search paradigm to relational data has been an active area of research within the database and
information retrieval (IR) community. Various methodologies are being proposed and implemented but
despite numerous publications there remains a severe lack of standardization for system evaluations. This
lack of standardization produces plenty of contradictory in results. This system provides standardization for
the performance evaluation. It produces efficiency in execution time and memory consumption. This scheme
uses update of the files with keyword search for the consumer. This analysis includes the BLINKS technique
for providing hierarchy to the search and it uses the BANKS, DISCOVER to provide a ranking of the
scheme. It gives the length of the file using bidirectional expansion for keyword search on graph databases.
This scheme provides the solution for all structured and semi-structured data. This solution contains the size
of the file using the technique of the compression. This system achieves various advantages related with the
files of the data in keyword search.

Keywords: relational data, memory consumption, bidirectional expansion, information retrieval.

I. Introduction
The pervasive searching text box has changed the
way public interact with data. Nearly fifty percent
of the internet users use web search engine
daily[10],performing in excess of more billion
searches[11].The victory of keyword search scheme
from what it does not require a specific query
language or data knowledge of the underlying
structure of the information. Web users increasingly
asking keyword search intermediate for getting
information and it is very normal to elaborating this
paradigm for relational data. This elaboration has
been an active area of research in the past decade.
We posit the information that the existing and their

evaluations performed by the various researchers
are not indicative of the these schemes in the real
time performance.

Even though important number of research papers
being implemented in this area, existing speculative
evaluations ignore or only partially explain many
important issues related to search performance.
Bhalotia [2] says that existing evaluation of the
system performance would be unpredictable. This
will explain about the important of this real world
tasks. This will gain little support in the existing
literature, but the failure of these systems to gain a
foothold implies that robust ,independent evaluation
is necessary. In part, existing performance issues
may be concealed by experimental design decisions

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

461

such as the option of datasets or the building of
query workloads. Therefore we conduct not
dependent ,speculative evaluation of previous
comparative keyword search techniques using an
openly available benchmark to ascertain their real-
world performance for realistic query workloads.

i.Keyword searching:- Keyword searching is the
process of of searching electronically stored
evidence using any specified word, or combination
of words with the intent of locating and identifying
potential evidence. The process involves careful
planning and review of keywords so that only the
relevant documents are produced.

ii.Keyword Analysis:-We describe BANKS[2], a
system which enables keyword-based search on
relational databases, together with data and schema
browsing. BANKS[2] enables users to extract
information in a simple manner without any
knowledge of the schema or any need for writing
complex queries. A user can get information by
typing a few keywords, following hyperlinks, and
interacting with controls on the displayed results.

iii.Keyword Querying and Ranking:-One
approach that has been explored is to allow users to
query such databases in the same ways as they
explore web documents. Thus, it is desirable to be
able to use the paradigm of keyword querying and
automated result ranking over contents of databases.
However, the rich relationships and schema
information present in databases makes a direct
adaptation of information retrieval techniques
inappropriate.

Fig.1. Keyword Search Scheme

A. Comparative Keyword Search Scheme

Keyword search on semi-structured
data(e.g.HTML,XML) and comparative or
relational data differs considerably from traditional

IR. A divergence exists between the data's physical
storage and logical view of the information.
Comparative or Relational databases are normalized
to neglect redundancy and primary keys identify
unique information. Search queries frequently cross
these relationships that is subset of search terms
evaluated first then the related tuples found
automatically, which forces comparative keyword
search scheme to recover a logical view of the
information. The internal assumption of keyword
search that is search terms are related and the
process will be complicated. It is almost possible to
add another search term with existing result. This
realization leads to pressure between the comfort
and coverage of search results.

B. Contributions
As we discuss previous in this paper, many
relational keyword search scheme approximate
solutions to intractable problems. Researchers
consequently rely on speculative evaluation to
validate their heuristics. we continue this tradition
by evaluating these systems using a benchmark
designed for comparative or relational keyword
search. On the view of retrieval process exposes the
real-world trade-offs made in the design of many of
these systems. But, some systems use alternative
methods to improve performance compare with
other methods. These are all not focus on prior
evaluations.

The major contributions of this paper as
follows:

 We conduct an independent ,speculative
performance evaluation of 5 relational or
comparative keyword search scheme which
reduces the work as comparison with
previous.

 Keyword search uses the ranking system.
Which filter the file based on their file size
and order of usage in the database and user.

 Program execution takes the less time and the
memory consumption very less compare to
other techniques. In this technique very
much efficient.

 Length of the file can be seen by every user
of the application. The execution time also
shown for everyone in the viewable type of
the task.

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

462

 File ranking can be seen by everyone in the
usage of chart. It will give clear identification
of the project.

 It is compatible with every system and it will
show the range of the information should be
unique with other technique.

 It is efficient with other technique and it is
used for the all user .

The remainder of this paper is organized as follows.
In part II, we motivate this work by describing
previous evaluations and why an independent
evaluation of these systems is warranted. Part III
formally defines the problem of keyword search in
relational data graphs and describes the schemes
included in our evaluation. Part IV explains our
experimental setup, including our evaluation
benchmark and metrics. In Part V, we explain our
experimental results, including possible threats to
validity. We review related work in Part VI and
provide our conclusions in Part VII.

II. Objective for Independent
Evaluation

Most evaluations in the literature disagree about the
performance of various search techniques, but
important experimental design differences may
account for these difficulties. We discuss three such
differences in this section.

A. Datasets

Figure 2 summarizes the datasets and the number of
queries used in previous evaluations. Although this
graph suggests some uniformity in evaluation
datasets, their content varies dramatically. Consider
the evaluations of BANKS-II [17], BLINKS [13],
and STAR [18]. Only BANKS-II’s evaluation
includes the entire Digital Bibliography & Library
Project (DBLP) and the Internet Movie Database
(IMDb) . Both BLINKS and STAR use smaller
subsets to facilitate comparison with systems that
assume the data graph fits entirely within main
memory. The literature does not address the
representativeness of database subsets, which is a
serious threat because the choice of a subset has a
profound effect on the experimental results. For
example, a subset containing one percent of the
original data is two orders of magnitude easier to
search than the original database due to fewer tuples
containing search terms.

B. Query Workloads

The query workload is another critical factor in the
evaluation of these systems. The trend is for
researchers either to create their own queries or to
create queries from terms selected randomly from
the corpus. The latter strategy is particularly poor
because queries created from randomly-selected
terms are unlikely to resemble real user queries
[23]. The number of queries used to evaluate these
systems is also insufficient. The traditional
minimum for evaluating retrieval systems is 50
queries [32] and significantly more may be required
to achieve statistical significance [34]. Only two
evaluations that use relatistic query workloads meet
this minimum number of information needs.

C. Testing Difficulties
Discrepancies among existing evaluations are
prevalent. Table II lists the mean execution times of
systems from three evaluations that use DBLP and
IMDb databases. The table rows are search
techniques; the columns are different evaluations of
these techniques. Empty cells indicate that the
system was not included in that evaluation.
According to its authors, BANKS-II “significantly
outperforms” [17] BANKS, which is supported by
BANKS-II’s evaluation, but the most recent
evaluation contradicts this claim especially on
DBLP. Likewise, BLINKS claims to outperform
BANKS-II “by at least an order of magnitude in
most cases” [13], but when evaluated by other
researchers, this statement does not hold. We use
Table II to motivate two concerns that we have
regarding existing evaluations. First, the difference
in the relative performance of each system is
startling. We do not expect the most recent
evaluation to downgrade the orders of magnitude
performance improvements to performance
degradations, which is the certainly the case on the
DBLP dataset. Second, the absolute execution times
for the search techniques vary widely across
different evaluations. The original evaluation of
each system claims to provide “interactive”
response times (on the order of a few seconds) but
other evaluations strongly refute this claim.

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

463

Fig 2.Statistics from evaluation

III. Relational Keyword Search Systems
In this part explains about the speculative evaluation
of the system, we took general model of keyword
search over data graphs. It includes the search
techniques in our evaluation. Other evaluation
techniques mentioned in Part VI.

A. Query based Schemes

Query based approaches support keyword search
over relational databases directly executes SQL
commands. These techniques model the relational
schema as a graph where edges denote relationships
between tables. The database’s full text indices all
tuples contain search terms and a join expression is
created for each possible relationship between these
tuples. DISCOVER [15] creates a set of tuples for
each subset of search terms in the database
relations. A candidate network is a tree of tuple sets
where edges correspond to relationships in the
database schema. DISCOVER enumerates
candidate networks using a breadth-first algorithm
but limits the maximum size to ensure efficient
enumeration. A smaller size improves performance
but risks missing results. DISCOVER creates a join
expression for each candidate network, executes the
join expression against the underlying database to
identify results, and ranks these results by the
number of joins. Hristidis et al. [14] refined
DISCOVER by adopting pivoted normalization
scoring [30] to rank results.

B. Graph based schemes
The aim of nearest search is to minimize the

weight of the result trees. This work is a
formulation of the group of Steiner tree
problem[9],which is known to be NP-

complete[29].Graph based searches are more
general than query based approaches, for relational
databases, XML and Internet can all be modelled as
graphs.BANKS[2] produces the results by searching
the graph backwards from vertices that contain
query overload keywords. The backward search
technique concurrently executes copies of Dijkstra’s
shortest path algorithm[7],one from each vertex that
contains a search term. When a vertex has been
labelled with its distance to each search term, that
vertex is the root of a directed tree that is a result of
the query.

BANKS-II[17] elements the backward search
technique[2] by searching the graph forwards from
potential root nodes. This strategy has an advantage
when the query contains a common term or when a
copy of Dijkstra’s shortest path algorithm reaches a
vertex with a large number of incoming edges.
Spreading activation prioritizes the search but may
cause the bidirectional search technique to identify
shorter path is found, the existing results must be
updated recursively, which potentially increases the
total execution time.

IV. Appraisal Framework
In this part, we present our appraisal framework.
We start by describing the benchmark [5] that we
use to evaluate the various keyword search
techniques. We then describe the metrics we report
for our experiments and our experimental setup.

A. Criterion Overview

Our evaluation benchmark includes the three
datasets such that MONDIAL [24], IMDb, and
Wikipedia. Two datasets (IMDb and Wikipedia) are
extracted from popular websites. The size of the
datasets varies widely: MONDIAL is more than two
orders of magnitude smaller than the IMDb dataset,
and Wikipedia lies in between. In addition, the
schemas and content also differ considerably.
MONDIAL has a complex schema with almost 30
relations while the IMDb subset has only 6.
Wikipedia also has few relations, but it contains the
full text of articles, which emphasizes more
complex ranking schemes for results. Our datasets
roughly span the range of dataset sizes that have
been used in other evaluations.

0

5

10

15

20

25

5 10 20 50

Ev
al

ua
tio

n(
s)

Datasets(k)

STAR

BLINKS

EASE

BANKS

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

464

The benchmark’s query workload was constructed
by researchers and comprises 50 information needs
for each dataset. The query workload does not use
real user queries extracted from a search engine log
for three reasons. First, Internet search engine logs
do not contain queries for datasets not derived from
websites. Second, many queries are inherently
ambiguous and knowing the user’s original
information need is essential for accurate relevance
assessments. Third, many queries in Internet search
engine logs will reflect the limitations of existing
search engines that is, web search engines are not
designed to connect disparate pieces of information.
Users implicitly adapt to this limitation by
submitting few queries that reference multiple
database entities. Five IMDb queries are outliers
because they include an exact quote from a movie.
Omitting these queries reduces the maximum
number of terms in any query to 7 and the mean
number of terms per query to 2.91. The statistics for
our queries are similar to those reported for web
queries [16] and our independent analysis of query
lengths from a commercial search engine log [26],
which suggest that the queries are similar to real
user queries.

B. Benefits
This system uses two metrics to measure system
performance. The first is execution time, which is
the time elapsed from issuing the query until the
system terminates. Because there are a large number
of potential results for each query, systems typically
return only the top-k results where k specifies the
desired retrieval depth. Our second metric is
response time, which this define as the time elapsed
from issuing the query until i results have been
returned by the system . Because this definition is
not well-defined when fewer than k results are
retrieved by a system performance should not be
measured without also accounting for search
effectiveness due to tradeoffs between runtime and
the quality of search results. Precision is the ratio of
relevant results retrieved to the total number of
retrieved results. This metric is important because
not every result is actually relevant to the query’s
underlying information need. If fewer than k results
are retrieved by a system, it calculate the precision
value at the last result. It also use mean average
precision (MAP) to measure retrieval effectiveness
at greater retrieval depths.

C. Observational Setup

The search techniques were implemented BANKS,
DISCOVER, and DISCOVER-II and obtained
implementations of BANKS-II, DPBF, BLINKS,
and STAR. We corrected a host of flaws in the
specifications of these search techniques and the
implementation defects that we discovered. With
the exception of DPBF, which is written in C++, all
the systems were implemented in C#. The
implementation of BANKS adheres to its original
description except that it queries the database
dynamically to identify nodes (tuples) that contain
query keywords. Our implementation of
DISCOVER borrows its successor’s query
processing techniques. Both DISCOVER and
DISCOVER-II are executed with the sparse
algorithm, which provides the best performance for
queries with AND semantics [14].

BLINKS’s block index was created using breadth-
first partitioning and contains 50 nodes per block.
STAR uses the edge weighting scheme proposed for
undirected graphs. For our experiments, we
executed the C# implementations on a Windows
machine with dual core 2.4 GHz AMD Opteron
242 processors and 2 GB of RAM. We compiled
each system using C# version 4.0 and ran the
implementations with Microsoft Visual studio
2010. Due to its Windows bindings, DPBF could
not be run on the same machines as the Java
implementations. Instead, DPBF was run on a 2.4
GHz Intel Core 2 quad-core processor with 4 GB of
RAM running Windows 7.

It is used Microsoft SQL server 2008 as our
database management system. For all the systems,
we limit the size of results to 5 nodes (tuples) and
impose a maximum execution time of 30 minutes.
If the system has not terminated after this time limit,
we stop its execution and denote it as a timeout
exception. This threshold seems more than adequate
for capturing executions that would complete within
a reasonable amount of time. If a system exhausts
the total amount of virtual memory, we mark it as
failing due to excessive memory requirements.

V. Observation

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

465

Graph lists the number of queries executed
successfully by each system for our datasets and
also the number and types of exceptions we
encountered. Of interest is the number of queries
that either did not complete execution within 1 hour
or exhausted the total amount of virtual memory.
Most search techniques complete all the MONDIAL
queries with mean execution times ranging from
less than a second to several hundred seconds.
Results for IMDb and Wikipedia are more
troubling. Only DISCOVER and DISCOVER-II
complete any IMDb queries, and their mean
execution time is several minutes. DPBF joins these
two systems by completing all the Wikipedia
queries, but all three systems’ mean execution times
are less than ideal, ranging from 6–30 seconds. To
summarize these results, existing search techniques
provide reasonable performance only on the
smallest dataset (MONDIAL). Performance
degrades significantly when we consider a dataset
with hundreds of thousands of tuples (Wikipedia)
and becomes unacceptable for millions of tuples
(IMDb). The memory consumption for these
algorithms is considerably higher than reported,
preventing most search techniques from searching
IMDb.

A. Execution Time

Fig 3. Mean execution time vs number of search

terms.

1) Number of search terms: A number of
evaluations [8], [14], [15], [17] report mean
execution time for queries that contain
different numbers of search terms to show that
performance remains acceptable even when
queries contain more keywords. Note that some
systems fail to complete some queries, which
accounts for the omissions in the graph. As
evidenced by the graph, queries that contain

more search terms require more time to execute
on average than queries than contain fewer
search terms. The relative performance among
the different systems is unchanged. These
results are similar to those published in
previous evaluations. DISCOVER-II to
illustrate the range in execution times
encountered across the various queries. As
evidenced by these graphs, several queries
have execution times much higher than the
rest. These queries give the system the
appearance of unpredictable performance,
especially when the query is similar to another
one that completes quickly.

2) Frequency collection: In an effort to better
understand another factor that is commonly
cited as having a performance impact, we
consider mean execution time and the
frequency of search terms in the database
(Figure 6). The results are surprising: execution
time appears relatively uncorrelated with the
number of tuples containing search terms. This
result is counter-intuitive, as one expects the
time to increase when more nodes (and all their
relationships) must be considered. One
possible explanation for this phenomenon is
that the search space in the interior of the data
graph (i.e., the number of nodes that must be
explored when searching) is not correlated with
the frequency of the keywords in the database.
He et al. [13] imply the opposite; we believe
additional experiments are warranted as part of
future work.

Fig 4. Execution time vs mean frequency

3) Depth of retrieval: Continuing this analysis to
higher retrieval depths is not particularly useful

0

20

40

60

80

1 2 3 4

ex
ec

ut
io

n
tim

e

number of search terms

BANKS-II

BLINKS

STAR

0

50

100

150

200

5 50 500 5000

ex
ec

ut
io

nt
im

e(
s)

collection of frequency terms

BANKS-II

BLINKS

STAR

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

466

given the small size of the MONDIAL
database and given that most systems identify
all Continuing this analysis to higher retrieval
depths is not particularly useful given the small
size of the MONDIAL database and given that
most systems identify all.

B. Response Time

In addition to overall search time, the response time
of a keyword search system is of critical
importance. Systems that support top-k query
processing need not enumerate all possible results
before outputting some to the user. Outputting a
small number of results (e.g., 10) allows the user to
examine the initial results and to refine the query if
these results are not satisfactory. Interestingly, the
response time for most systems is very close to the
total execution time, particularly for k = 10. The
ratio of response time to the total execution time
provided in the table shows that some scoring
functions are not good at quickly identifying the
best search results. For example, DISCOVER-II
identifies the highest ranked search result at the
same time as it identifies the tenth ranked result
because its bound on the possible score of unseen
results falls very rapidly after enumerating more
than k results.

In general, the proximity search systems manage to
identify results more incrementally than the
schema-based approaches. Another issue of interest
is the overhead required to retrieve additional search
results. Exception of BANKS-II, the total overhead
is minimal less than a few seconds. In the case of
STAR, the percentage slowdown is high, but this
value is not significant given that the execution time
is so low.

C. Memory consumption

Limiting the graph-based approaches to 2 GB of
virtual memory might unfairly bias our results
toward the schema based approaches. The schema-
based systems offload much of their work to the
underlying database, which swaps temporary data
(e.g., the results of a join) to disk as needed. Hence,
DISCOVER and DISCOVER-II might also require
a significant amount of memory, and a more fair
evaluation would allow the graph-based techniques

to page data to disk. To investigate this possibility,
we ran all the systems with 2 GB of physical
memory and 5 GB of virtual memory. Note that
once a system consumes the available physical
memory, the operating system’s virtual memory
manager is responsible for paging data to and from
disk. The precipitous drop in execution time
suggests that Java’s garbage collector was
responsible for the majority of BLINKS’s execution
time, and this overhead was responsible for
BLINKS’s poor performance. The other graph-
based systems do not significantly improve from the
additional virtual memory. In most cases, we
observed severe thrashing, which merely
transformed memory exceptions into timeout
exceptions.

i. Initial Memory Consumption: To better
understand the memory utilization of the systems
particularly the overhead of an in-memory data
graph, we measured each system’s memory
footprint immediately prior to executing a query.
The schema-based systems consume very little
memory, most of which is used to store the database
schema. In contrast, the graph-based search
techniques require considerably more memory to
store their data graph.

VI. Related Work
Existing evaluations of relational keyword search
systems are adhoc with little standardization.
Webber [33] summarizes existing evaluations with
regards to search effectiveness. Although Coffman
and Weaver [5] developed the benchmark that we
use in this evaluation, their work does not include
any performance evaluation. Baid et al. [1] assert
that many existing keyword search techniques have
unpredictable performance due to unacceptable
response times or fail to produce results even after
exhausting memory. Our results particularly the
large memory footprint of the system confirm this
claim. A number of relational keyword search
systems have been published beyond those included
in our evaluation. Chen et al. [4] and Chaudhuri and
Das [3] both presented tutorials on keyword search
in databases. Yu et al. [35] provides an excellent
overview of relational keyword search techniques.
Liu et al. [21] and SPARK [22] both propose
modified scoring functions for schema-based

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

467

keyword search. SPARK also introduces a skyline
sweep algorithm to minimize the total number of
database probes during a search. Qin et al. [27]
further this efficient query processing by exploring
semi-joins. Baid et al. [1] suggest terminating the
search after a predetermined period of time and
allowing the user to guide further exploration of the
search space. In the area of graph-based search
techniques, EASE [20] indexes all r-radius Steiner
graphs that might form results for a keyword query.
Golenberg et al. [12] provide an algorithm that
enumerates results in approximate order by height
with polynomial delay. Dalvi et al. [6] consider
keyword search on graphs that cannot fit within
main memory. CSTree [19] provides alternative
semantic the compact Steiner tree to answer search
queries more efficiently.

In general, the evaluations of these systems do not
investigate important issues related to performance
(e.g., handling data graphs that do not fit within
main memory). Many evaluations are also
contradictory, for the reported performance of each
system varies greatly between different evaluations.
Our experimental results question the validity of
many previous evaluations, and we believe our
benchmark is more robust and realistic with regards
to the retrieval tasks than the workloads used in
other evaluations. Furthermore, because our
evaluation benchmark is available for other
researchers to use, we expect our results to be
repeatable.

VII. Conclusion and Future Work
It is not like many of the evaluations reported

in the literature, it is designed to investigate not the
underlying algorithms but the overall, end-to-end
performance of these retrieval systems. Hence, it
favor a realistic query workload instead of a larger
workload with queries that are unlikely to be
representative by randomly selecting Overall, the
performance of existing relational keyword search
systems is somewhat disappointing, particularly
with regard to the number of queries completed
successfully in our query workload, Given
previously published results it is especially
surprised by the number of timeout and memory
exceptions that we witnessed. Because it has larger
execution times might only reflect choice to use

larger datasets, we focus on two concerns that we
have related to memory utilization. First, no system
admits to having a large memory requirement.

In fact, memory consumption during a search has
not been the focus of any previous evaluation. To
the best of our knowledge, only two papers [6], [18]
have been published in the literature that make
allowances for a data graph that does not fit entirely
within main memory. Given that most existing
evaluations focus on performance, handling large
data graphs should be well-studied. Kasneci et al.
[18] show that storing the graph on disk can also be
extremely expensive for algorithms that touch a
large number of nodes and edges. Second, our
results seriously question the scalability of these
search techniques. MONDIAL is a small dataset
that contains fewer than 20K tuples. While its
schema is complex, we were not expecting failures
due to memory consumption.

Although we executed our experiments on machines
that have a small amount of memory by today’s
standards, scalability remains a significant concern.
If 2 GB of memory is not sufficient for MONDIAL,
searching our IMDb subset will require ' 200 GB of
memory and searching the entire IMDb database
would require ' 5 TB. Without additional research
into high-performance algorithms that maintain a
small memory footprint, these systems will be
unable to search even moderately-sized databases
and will never to suitable for large databases like
social networks or medical health records. Further
research is unquestionably necessary to investigate
the myriad of experimental design decisions that
have a significant impact on the evaluation of
relational keyword search systems. For example,
our results indicate that existing systems would be
unable to search the entire IMDb , which
underscores the need for a progression of datasets
that will allow researchers to make progress toward
this objective. Creating a subset of the original
dataset is common, but we are not aware of any
work that identifies how to determine if a subset is
representative of the original dataset. In addition,
different research groups often have different
schemas for the same data (e.g., IMDb), but the
effect of different database schemas on

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

468

experimental results has also not been studied. Our
results should serve as a challenge to this
community because little previous work has
acknowledged these challenges. Moving forward,
we must address several issues. It must design
algorithms, data structures, and implementations
that recognize that storing a complete graph
representation of a databases.

It can also use for fully structured or fully semi-
structured databases. It will produce or achieve
another milestone in evaluation of the systems
standards of the keyword search process of the
scheme.

VIII. References
1. Baid, I. Rae, J. Li, A. Doan, and J. Naughton,

“Toward Scalable Keyword Search over
Relational Data,” Proceedings of the VLDB
Endowment, vol. 3, no. 1, pp. 140–149, 2010.

2. G. Bhalotia, A. Hulgeri, C. Nakhe, S.
Chakrabarti, and S. Sudarshan,“Keyword
Searching and Browsing in Databases using
BANKS,” in Proceedings of the 18th
International Conference on Data Engineering,
ser. ICDE ’02, February 2002, pp. 431–440.

3. S. Chaudhuri and G. Das, “Keyword Querying
and Ranking in Databases,” Proceedings of the
VLDB Endowment, vol. 2, pp. 1658–1659,
August 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1687553.

4. Y. Chen, W. Wang, Z. Liu, and X. Lin,
“Keyword Search on Structured and Semi-
Structured Data,” in Proceedings of the 35th
SIGMOD International Conference on
Management of Data, ser. SIGMOD ’09, June
2009, pp. 1005–1010.

5. J. Coffman and A. C. Weaver, “A Framework
for Evaluating Database Keyword Search
Strategies,” in Proceedings of the 19th ACM
International Conference on Information and
Knowledge Management, ser. CIKM ’10,
October 2010, pp. 729–738. [Online].
Available:
http://doi.acm.org/10.1145/1871437.1871531

6. B. B. Dalvi, M. Kshirsagar, and S. Sudarshan,
“Keyword Search on External Memory Data

Graphs,” Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 1189–1204, 2008.

7. W. Dijkstra, “A Note on Two Problems in
Connexion with Graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

8. B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang,
and X. Lin, “Finding Topk Min-Cost Connected
Trees in Databases,” in ICDE ’07: Proceedings

9. of the 23rd International Conference on Data
Engineering, April 2007, pp. 836–845.

10. S. E. Dreyfus and R. A. Wagner, “The Steiner
Problem in Graphs,” Networks, vol. 1, no. 3,
pp. 195–207, 1971. [Online]. Available:
http://dx.doi.org/10.1002/net.3230010302

11. D. Fallows, “Search Engine Use,” Pew Internet
and American Life Project, Tech. Rep., August
2008, http://www.pewinternet.org/Reports/

12. 2008/Search-Engine-Use.aspx.

13. [11] “Global Search Market Grows 46 Percent
in 2009,” http: //www.comscore.com/Press
Events/Press Releases/2010/1/ Global Search
Market Grows 46 Percent in 2009, January
2010.

14. K. Golenberg, B. Kimelfeld, and Y. Sagiv,
“Keyword Proximity Search in Complex Data
Graphs,” in Proceedings of the 2008 ACM
SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08, June
2008, pp. 927–940.

15. H. He, H. Wang, J. Yang, and P. S. Yu,
“BLINKS: Ranked Keyword Searches on
Graphs,” in Proceedings of the 2007 ACM
SIGMOD International Conference on
Management of Data, ser. SIGMOD ’07, June
2007, pp. 305–316.

16. Hristidis, L. Gravano, and Y. Papakonstantinou,
“Efficient IR-style Keyword Search over
Relational Databases,” in Proceedings of the
29th International Conference on Very Large
Data Bases, ser. VLDB ’03, September 2003,
pp. 850–861.

 Hristidis and Y. Papakonstantinou,
“DISCOVER: Keyword Search in Relational
Databases,” in Proceedings of the 29th International

A Speculative Performance Appraisal of Comparative Keyword Search Scheme…..Vijaya. A et al.,

469

Conference on Very Large Data Bases, ser. VLDB
’02. VLDB Endowment, August 2002, pp. 670–681.

17. B. J. Jansen and A. Spink, “How are we
searching the World Wide Web? A comparison
of nine search engine transaction logs,”
Information Processing and Management, vol.
42, no. 1, pp. 248–263, 2006.

18. Kacholia, S. Pandit, S. Chakrabarti, S.
Sudarshan, R. Desai, and H. Karambelkar,
“Bidirectional Expansion for Keyword Search
on Graph Databases,” In Proceedings OF The
31st International Conference on Very Large
Data Bases, Ser. VLDB ’05, August 2005, pp.
505–516.

19. Kasneci, M. Ramanath, M. Sozio, F. M.
Suchanek, and G. Weikum, “STAR: Steiner-
Tree Approximation in Relationship Graphs,” in
Proceedings of the 25th International
Conference on Data Engineering, ser. ICDE
’09, March 2009, pp. 868–879.

20. Li, J. Feng, X. Zhou, and J. Wang, “Providing
built-in keyword search capabilities in
RDBMS,” The VLDB Journal, vol. 20, pp. 1–
19, February 2011. [Online]. Available:
http://dx.doi.org/10.1007/s00778-010-0188-4

21. [20] G. Li, B. C. Ooi, J. Feng, J. Wang, and L.
Zhou, “EASE: An Effective 3-in-1 Keyword
Search Method for Unstructured, Semi-
structured and Structured Data,” in Proceedings
of the 2008 ACM SIGMOD International
Conference on Management of Data, ser.
SIGMOD ’08, June 2008, pp. 903–914.

22. F. Liu, C. Yu, W. Meng, and A. Chowdhury,
“Effective Keyword Search in Relational
Databases,” in Proceedings of the 2006 ACM
SIGMOD International Conference on
Management of Data, ser. SIGMOD ’06, June
2006, pp. 563–574.

23. Y. Luo, X. Lin, W. Wang, and X. Zhou,
“SPARK: Top-k Keyword Query in Relational
Databases,” in Proceedings of the 2007 ACM
SIGMOD International Conference on
Management of Data, ser. SIGMOD ’07, June
2007, pp. 115–126.

24. C. D. Manning, P. Raghavan, and H. Sch¨utze,
Introduction to Information Retrieval. New
York, NY: Cambridge University Press, 2008.

25. W. May, “Information Extraction and
Integration with FLORID: The MONDIAL
Case Study,” Universit¨at Freiburg, Institut f¨ur
Informatik, Tech. Rep. 131, 1999, available
from http://dbis.informatik.uni-goettingen.
de/Mondial.

26. Nandi and H. V. Jagadish, “Qunits: queried
units for database search,” in CIDR ’09:
Proceedings of the 4th Biennial Conference on
Innovative Data Systems Research, January
2009.

27. Pass, A. Chowdhury, and C. Torgeson, “A
Picture of Search,” in InfoScale ’06:
Proceedings of the 1st International Conference
on Scalable Information Systems, May 2006.

